ON THE STABILITY OF STEADY COMBUSTION OF SOLID
FUELS
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In his paper [1} Zel'dovich had derived the dependence of the rate of steady combustion of a solid
fuel on the initial temperature. Istratov and Librovich [2] had investigated the stability of steady combus-
tion of solid fuels taking into consideration the variation of temperature at the surface of such fuels.

The effects of heat release in the reaction zones and of the variation of fields of terperature and of
the rate [of combustion] on the stability of the steady state combustion of solid fuels are investigated in
‘this paper. The assumptions as to the mechanism of solid fuel combustion on which this investigation is
based are given in [2].

The method of small perturbations is used for analyzing the stability of steady combustion of solid
fuels, and a new stability criterion is derived. Calculations carried out on a type BESM-2M computer had
shown that stability is materially affected by the following parameters: o, zz/cp, Or, AQ/cp, and v&y°.

The problem is solved in a univariate formulation. We assume the system of coordinates to be per-
manently attached to the boundary separating the solid fuel from its products of combustion. The x-axis is
directed from the solid fuel face toward the burning surface,

" Region 1 is defined by the heat conduction equation
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The procegses taking place in region 2 are defined by the system of equations derived in [3]
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Region 3 containing gaseous products of combustion is defined by the equation of heat conduction
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Here T, u, p, p*, and s are, respectively, the temperature, the rate [of combustion], the pressure
and the concentration; cp, 4, D, and A are, respectively, the specific heat, the dynamic viscosity coeffi-
cient, the diffusion coefficient, and the coefficient of thermal conductivity; and t is the time. Subscript 1
relates to the k-phase of the solid fuel, and subscripts 2 and 3 to the gaseous phases in regions 2 and 3,
respectively. '
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Let us write Egs. (1)-(3) in a dimensionless form, introducing dimensionless parameters of the
form
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Here u,° is the linear rate of steady combustion, uy is the normal rate of steady flame propagation,
p3° is the density of gas in region 3 at steady combustion, Ty is the initial temperature of the solid fuel,
and Ty the temperature of combustion.

The system of equations (1)-(3) must be supplemented by the equation of state which in the cage of an
incompressible gas (the rate of flame [propagation] is small in comparison with the speed of sound) re-
duces to the relationship between the density and temperature of gas [4]
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Here o is the ratio of fuel and gas densities.

Introducing the mass rate of combustion m = RU and taking into consideration the equation of state
(4), we can write the system of Egs. (1)-(3) in the form
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Here P and L are, respectively, the Prandtl and the Lewis numbers.
Let us formulate boundary conditions. At infinity the solutions of Eqs. (5) must satisfy
B; >0 for E= — o0, B << oo for E—4 o0 (6)

and, also, the conditions at the interfaces of regions. Let us assume that the interfaces of reactions may
be subject to small displacements. In a stationary system of coordinates the coordinate of the reaction re-
gion in the solid fuel k-phase is

t
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where Xy, is the initial position of the solid fuel face. From this we have

uy = -—dzm/dt»
Let us asgsume that

o1 = Eno — (v -+ fe*7)
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Then

my =1+ of’" .

In the moving system of coordinates £;= 0. We assume the coordinate of
the reaction zone in the gas to be

gz = E?o + ge‘m"

Here ¢,° is the [coordinate of the] steady position of the reaction zone.
According to [3] the width of region 2 is of the order p,/psuy Hence
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For a steady combustion process pqus® = psits. We then have
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Let us assume, as in [4], that variations of the chemical reaction rates wy and w, resulting from a
perturbation of the steady state are dependent on variations of temperatures Tg and Ty af the correspond-
ing faces of the k-phase and of the gas. This is a reasonable assumption in the case of high energies E,
and E, of chemical reaction activation. The equations for reaction rates in the k-phase and in the gas may
now be written as
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The boundary conditions at interface of regions, expressed in dimensionless form, are of the form
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Here q; and q, are the reaction heat effects in the k-phase and in gas, respectively.

We thus have a system of six differential equations (5) in six unknowns 8y, 8,, 65, Py, my, and s,,
whose solution must satisfy boundary conditions (6) and (8).

Since in the following the value of p, will not be required, the second of Eqgs. (5) may be omitted
from further considerations.

We use the method of small perturbations for analyzing stability, and shall seek the solution of the
derived system of equations in the form

f& D =F@®+[F @ +ef @le. (9)

Substituting the solution of the form (9) into Egs. (5) and into boundary conditions (6) and (8), retain-
ing in these terms of the form F(£) and equating coefficients of e°, we obtain a system of equations and
boundary conditions defining the steady process and the perturbed state. Solufion of the steady [state]
problem is of the form

8, = 8, %, M, = const = 1
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The boundary conditions are
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The solution of system (11) with conditions (12) is
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Substituting solutions (13) into boundary conditions (12), we obtain a system of homogeneous equa-
tions for the determination of constants, e, b, c, d, f, g, k, and .. For a nontrivial solution to exist the de-

terminant of this system must be equal to zero. The equation defining the zero approximation of the com-
plex frequency is of the form

20 (y —1) + oo +y =+ o0) VI + 4o (14)

where
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After simple transformations, the frequency equation may be written as

® + na? + e =0 (16)
where
=0 =0t —-1P+ol + Dl .
The roots of this equation are
o, =0, Wy, = — Yy M Yo V2 — Ay » 17)

Since the solution of Eq. (14) had necessitated a squaring operation, its extraneous roots must be
eliminated by substitution of obtained roots into the input equation.
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The perturbations corresponding to the root wy = 0 occur when the initial steady state distribution of
parameters shifts alongthe x-axis without altering its form. According to [5] the determination of stabil-
ity must be invariant with respect to this transformation owing to the invariance of the problem formula-
tion with respect to shift along the x axis.

When (nz2 — 47y) < 0, the roots of Eq. (16) are complex. It follows from (17) that in this case the sol-
ution defines a steady process (Rew < 0), when

[—@—12+aly+ >0, (18)
From (10) follows

Ay < exp \’Ez") .

8 =0 =\~ I

(19)

Thus, under conditions of steady combustion, the temperature at the solid fuel face depends on @y,
Az/cp, and v¢,°, i.e., on the properties of the gaseous phase.

Substituting relationship (19) into (15), we obtain
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Condition (18) derived for the stability of solid fuel combustion depends on 8y, zy/cp, o, Ay/cp, and
vés°. Unlike in the stability criteria formulated earlier [1, 2], ®g is determined here by solving the
steady-state problem.

A BESM-2M computer was used for estimating the effect of these parameters on the stability of sol-
id fuel combustion in the following range of variation of basic parameters:

0.1 < 0 << 0.4, 02 /ey <25, 0.8<CvES <25, 0.3 8/c, <085 8. =1,

Results of calculations are shown in Figs. 1 and 2. Curves 1, 2, and 3 in Fig. 1 relate to Az/cp = 0.3,
0.5, and 0.6, where the solid and the dashed lines correspond, respectively, to v£,° = 0.8, and 1.1, In Fig.
2 curves 1, 2, and 3 relate to Az/Cp = 0.4, 0.5, and 0.6 with the solid and dashed lines corresponding, re-
spectively, to v£,° = 1,5 and 2.5. Regions of instability are indicated by shading. These curves show that
with increasing v&,® at Ay/cp = const, as well as with increasing Aq/cp at vEy® = const, the instability re-
gion shifts upward along the zz/cp—axis. Hence a widening of the preheat region (the dark zone) and in-
creasing the reaction heat effect in the gas results in the shift of the stability region upwards in the di-
rection of the z,/cp axis.

In concluding the authors wish to thank N, A. Kil'chevskii for discussing this problem and for his
valuable comments, and V. G. Klyuchnikov for his assistance in programming the BESM-2M computer,
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